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Moment Preserving Adaptive Particle Weights using Octree
Velocity Distributions for PIC Simulations

Robert Scott Martin∗ and Jean-Luc Cambier†

∗ERC Inc.,
†Spacecraft Propulsion Branch,
Air Force Research Laboratory,
Edwards AFB, CA 93524 USA

Abstract. The ratio of computational to physical particles is of primary concern to statistical particle based simulations such
as DSMC and PIC. An adaptive computational particle weight algorithm is presented that conserves mass, momentum, and
energy. This algorithm is then enhanced with an octree adaptive mesh in velocity space to mitigate artificial thermalization.
The new octree merge is compared to a merge that randomly selects merge partners for a bi-Maxwellian velocity distribution.
Results for crossing beams in a fixed potential well along with an electrostatic PIC version with and without MCC collisions
based ionizing breakdown show the advantages of the merge algorithm to both fixed particle weights and randomly selected
merge partners.
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INTRODUCTION

The ratio of computational to physical particles is a key factor in determining the statistical scatter and accuracy in
particle-based simulation. This is particularly true for problems characterized by wide ranges of number density such
as those found in spacecraft electric propulsion plumes and ionizing discharges, where populations of electrons and
excited states can grow exponentially. A particle management method must then be devised which balances statistical
accuracy requirements with prevention of runaway computational costs.

The standard approach of merging of particles[1] using pair-wise coalescence (2:1 ratio), cannot guarantee simul-
taneous conservation of mass, momentum and energy. The pair-wise coalescence conserves mass by simply summing
the computational weight of the individual constituents. One computational particle only has three degrees of freedom
for velocity. The resulting particle can therefore either match the average momentum or the kinetic energy of the orig-
inal pair, but never both simultaneously. The growth of this error is limited by selecting particles that are near each
other in velocity space, but is a fundamental consequence of the reduction of degrees of freedom.

As a result of this inherent limitation, various sophisticated models have been designed to mitigate the error
in momentum or energy. Hewett used computational particles with internal energy in which the error could be
accumulated[2]. Assous and then Welch designed methods of merging values to grid nodes and redistributing the
moments to particles[3, 4]. Though exact energy and momentum conservation is possible with these methods, they are
considerably more complicated than the original naive 2:1 merge.

MOMENT PRESERVING MERGE

Having identified the lack of sufficient degrees of freedom in the merge resultant particle as the source of the error,
Cambier devised a simple method[5] which relies on the generation of a pair of particles. The particle pair provides the
required freedom to conserve all moments up to 2nd order exactly. The pair of resultant particles have the same mean
momentum as the originals, but they also have equal and opposite components of velocity perpendicular to the mean
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momentum such that energy is conserved. The moments to be conserved are shown in Equation 1. In these equation,
the ’k’ original particles, denoted with superscript ’(p)’, and the bar denotes an average quantity used in the Merge.
The subscripts denote the vector direction whether index, i, or directions parallel or perpendicular. Assuming the pair
of merge result particles are equal weight, the formulas for the merge can be seen in Equation 2 where superscript
’(a/b)’ refers to one or the other of the merge result particles. It can be shown that the moment sums are equivalent
between the k original and pair of resultant particles. Thus, pair-wise reduction is obtained through an equivalent ratio
of 4:2. These formulas also work for arbitrary ratios (n+2):2 with the same conservation properties.

m =
k

∑
p

m(p) (1)

vi =
∑

k
p m(p)v(p)

i

∑
k
p m(p)

v2
i =

∑
k
p m(p)

(
v(p)

i − vi

)2

∑
k
p m(p)

m(a/b) = m/2 (2)
v|| = vi,cm = vi

v⊥ =

√
v2

i

v(a/b)
i = v||± v⊥

It is important to note that in this example, some ambiguity in the sign of perpendicular velocity component remains.
For the purposes of this work, each cardinal direction is randomly assigned a sign for one of the particles and the
second particle uses the opposite sign in each direction. As a result of this choice of signs, though the component
of temperature is conserved in each direction independently, though the choice is not unique and particles may
scatter perpendicular to a dominant axis of the distribution. A better choice would be to determine the sign of mixed
second order moments and use that to assign the signs for the particle. If for example, most of the particles lay on
the (−x,−y,−z)→ (+x,+y,+z) line, the sign of the mixed moments would all be positive and all of the particle
signs should match. However, this approach is left to future consideration along with higher moment conservation in
extension and conclusion section.

Though this merge exactly conserves the moments through energy, it can result in artificial thermalization of the
velocity distribution. This is easily seen by considering the result of merging particles from two mono-energetic beams
of opposite direction. Though the energy of the resulting velocity distribution would be unchanged, the merge results
in a range of particles scattered throughout the gap between and outside the original beams. For example, if two equal
mass particles were selected from the +v side beam and a third of equal mass from the −v side, the mean velocity
would be at +v/3 and the resulting particle velocities would be symmetric v/3±

√
24/27 v and therefore clearly not

back into the original +v and −v beams.

OCTREE ADAPTIVE MESH

The present work extends this exact moment-preserving merge through an octree-based adaptive mesh in velocity
space to ensures that merging partners are relatively close in phase space. This mitigates artificial thermalization due
to merging of particles with large opposite velocities such as those found in the beam-beam interaction example.
Rather than randomly selecting merge partners, the particles are first sorted into octants of velocity space. Each of
these octants is then recursively subdivided and the particles are sorted into the sub-cells. The recursion was originally
terminated once the number of particles in a given sub-cell is below a specified threshold. The conservative merge is
then applied to the particles within one velocity space sub-cell.

To test the modified octree based conservative merge, a bi-Maxwellian velocity distribution was used. Figure 1
contrasts results from a randomly selected 4:2 merge and the octree based (3-11):2 based merge where (3-11) refers
to the range of computational particles per sub-cell to be merged. In the example shown, the random merge resulted
in a reduction of 10,000→ 5,000 computational particles while the octree merge starts with the original particles and
performs a reduction of 10,000→ 4,727.

The threshold was set to 11-particles per sub-cell because it was found to result in a net merge ratio of approximately
2:1. This is lower than 5.5:1 because, in each of the eight children cells, the number of particles ranges between 0-
11 rather than being exactly 11 particles. For example, cells with fewer than three particles cannot be conservatively
merged at all. The effective merge was found heuristically to result in approximately 2:1 reduction had 11 as the upper
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FIGURE 1. Comparison of randomly selected 4:2 merge (left) and octree based (3-11):2 merge (right). The scatter plots (top)
show particle positions in velocity space and the line plots (bottom) compare the original and merged velocity distributions
integrated over y- and z-velocity. In the scatter plots, the original particles are marked by the black dots, the left and right halves of
the original bi-Maxwellian are circled with blue and red respectively, and the output merged particles are marked in violet.

limit. This ratio may be problem dependent and should therefore be considered a tunable parameter that quantifies the
aggressiveness of the merging procedure rather than as a direct prescription for a specific merge ratio.

For fully adaptive particle weights, an analogous particle split method is necessary to re-populate depleted velocity
distributions that result from the particle merging. Without this split, particles merged when the spatial distribution is
compact result in extremely noisy values as the distribution expands. The split is achieved by performing operations
using the conservative moment sums similar to those of the merge. Instead of consuming the entire original particles
to form the merge results, only a fraction of each original particle is consumed to form the new pair. The effective
split has a ratio of (n+2):(n+2+2). This approach only offers a weak growth in the number of computational particles.
Instead, subsets of 3-4 particles are selected from the particles residing in the particular velocity sub-cell in which
the split operation is being performed. For each of these subsets, a 3:5 or 4:6 split is performed yielding a higher
computational particle growth rate. This split technique is used in the results presented.

In later studies with DSMC collisions, low density regions were populated by collision events that scattered velocity
out of the original distributions. Repeated merging as particles scattered out of the core of the distribution resulted in
a depletion of computational particle number within the core in favor a few heavy particles. To compensate for this
trend, the cell merge limit was modified such that cells are only subdivided when the total weight of particles within
the cell exceed a target weight. This target weight can then be modified for each cell so that the merge procedure
attempts to achieve a uniform number of computational particles per cell and therefore computational work.
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FIGURE 2. Position vs Time results of particle number density for Analytical, Fixed Weight, Random 4:2 Merge, and Octree
based Merge.

POTENTIAL WELL TEST CASES

The combined fully-adaptive particle weighting scheme can now be applied to several test-problems. The first is
collisionless thermal beams in a potential well. The initial conditions consist of a bi-Maxwellian distribution of
particles at the center on a fixed parabolic potential well. The two halves of the bi-Maxwellian initially separate in
opposite directions. The acceleration due to the electric field then decelerates the particles and they fall back across
the bottom of the well. They then proceed to the opposite side of the well and continue oscillating indefinitely.

This setup is a particularly useful surrogate for the expansion of a plasma plume because the particle density falls off
by several orders of magnitude between the center and edges of the well. It is also useful because an exact analytical
solution can be derived for the evolution of the density profile as follows.

In this simple invariant potential well setup, every particle in the initial distribution follows a simple oscillatory
trajectory such that the sum of kinetic and potential energies is constant. It can then be shown that the position and
velocity for each particle follows the sinusoidal trajectory based on the initial velocity and position.

The trajectories can then be solved for the initial velocities for particles between the ’inner’ and ’outer’ edges of
a spatial cell at any time of interest. These inner and outer velocities can then be used as the lower and upper limits
of integration on the initial bi-Maxwellian velocity distribution to determine the number of particles within a cell at a
given time.

For the particle simulations, an implicit Crank-Nicolson particle push using the analytically defined parabolic
potential was used. This push was selected due to its exact marginal stability and energy conservation properties
for simple harmonic oscillation. This allows the simulation to run for several beam oscillations without numerical
heating or cooling. The timesteps were selected based on a CFL criteria such that the fastest particles in the original
distribution only cross a single computational cell in a timestep.

Figure 2 shows number density results for the Analytical, Fixed Particle Weight, Randomly Selected 4:2 Merge,
and Octree Merge. Clearly the results for Octree Merged and Fixed particle weights are quite similar and match the
analytical results across the 4-orders of magnitude in particle density depicted.

This problem explicitly highlights the disadvantage of the random merge partner selection in thermalizing the
distribution. The thermalization occurs in the first timestep when the particles all reside in the central cell with opposite
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FIGURE 3. Comparison of number of computational particles throughout the simulations for Fixed Weight, Random 4:2 Merge,
and Octree based Merge.

directions. The random selection mixes particles from opposite sides of the initial bi-Maxwellian distribution and fills
in the center. Even though the figure looks dramatically different, all of the moments are conserved in each cell. For
every particle that lost momentum and energy to fill in the center figure, others gained momentum and energy which
results in a wider fringe.

Figure 3 shows the number of computational particles for the different particle management techniques. All of the
cases started with the same 6000 computational particles. The figure shows that the initial merge between the random
and octree techniques are of similar magnitude despite the dramatic difference in the density plots. The random merge
technique also does not include a split and so the number of particles monotonically decreases in steps with the bounce
frequency.

SPARK GAP TEST CASE

A second test of the merging algorithm involves electron avalanche in a spark gap gas breakdown. The simulation is
initialized with a 6kV potential drop across a 5mm gap. In this example, the particles tracked are the electrons in a
partially ionized background Argon gas which is assumed stationary for the duration of the simulation.

The 1-D code was modified to include the effect of the charge distribution on the electrostatic potential. The charge
density ρ , was assumed constant within the cell and was simply the difference of electron and ion densities multiplied
by the fundamental electron charge. Control points for a quadratic b-spline were then solved for the potential from
the charge density such that ∇2Φ = −ρ . The boundary conditions of ±3kV were also applied to the solution of the
control points. Electrons that arrived at the +3kV boundary were re-injected at the -3kV boundary with a small thermal
velocity to maintain charge neutrality. The injected particles were injected randomly in the inside half of the boundary
cell so that self-forcing due to the 0D-representation of the charge density does not cause the particles to be pushed
back out of the domain. Though this is only a rough representation of an electrostatic PIC model, it is sufficient for
testing the octree merge algorithms.

In addition to the modifications to the potential for the spark gap case, the push was modified to an analytical form
rather than using Crank-Nicolson. Because the potential is represented by a piecewise quadratic b-spline, the electric
field is a piecewise linear continuous function. The exact solution for a particle undergoing an acceleration that depends
linearly on position,~a = q

m
~E = q

m [
~E0 +

∂~E
∂~x |xo(~x−~x0)], can easily be found in 1D. It has the form shown in Equation 3

with constants defined in Equation 4. The equation assumes a piecewise-linear electric field and is therefore only valid
within one computational cell.

x(t) =− C1√
λ

e−
√

λ t +
C2√

λ
e
√

λ t −
q
m E0

λ
v(t) =C1e−

√
λ t +C2e

√
λ t (3)
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FIGURE 4. Position vs Time results of electron density and computational particles per cell in spark gap. Electrons are pushed
from the cathode on the left to anode on the right of the figures due to the 6kV applied potential. The left figure shows the original
electron density with fixed particle weight and the right figure shows the electron density for the octree merge algorithm.

C1 =−
(

x0
√

λ − vo +
q
m E0

λ

)
/2 C2 =

(
x0
√

λ + vo +
q
m E0

λ

)
/2 λ =

q
m

∂E
∂x

∣∣∣∣
xo

(4)

To account for the change of slope at cell boundaries, the cell boundary crossing times are found and particles
are pushed only within one cell at a time. The time at which a particle crosses x0 or x0 +∆x can then be solved by
substituting x(t) = x0 or xo +∆x and α = e

√
λ t into the formula for x(t) and solving the quadratic equation for α . The

crossing times for the cell edges are then simply t =
√

λ ln(α). Note that each side has two possible α-s as roots of
the quadratic equation. The set of four crossing times may then each be positive, negative, or imaginary. Each particle
is then advanced by the smallest real positive time or full timestep if shorter using Equation 3 repeatedly until the
full timestep is complete. The full timestep is based on a CFL condition assuming an electron accelerated by a 6kV
potential cannot cross more than one cell per timestep.

In the test case, the background was initialized at 0.1% singly charged ionization in a 1e22/m3 background of Argon.
The evolution of the electron density is shown in Figure 4. An interesting feature is the oscillation of trapped electrons
that are pulled back from the initial acceleration. This feature is a result of the potential exceeding the anode boundary
condition in the positive column followed up to the anode sheath. The slowest electrons that have insufficient kinetic
energy to overcome the sheath voltage fall back towards the cathode and oscillate indefinitely because the plasma is
collisionless. This example is quite similar to the crossing beams in the potential well of the previous example and
again demonstrate the importance of the octree merge’s minimal thermalization.

In addition to the modified particle push, a simple inelastic MCC collision process was added between the electrons
and background gas. The energy dependent cross section used was based off the data in Reference[6] using the form
given in Equation 5. In the equation, C is the slope of cross-section vs energy above the ionization threshold energy,
I. The maximum cross section, σmax is the peak cross section prior to a further reduction with increasing collision
energy. For Argon, values of C = 2e-17cm2/ev, I = 15.8ev, and σmax = 3.7e-16cm2 from Reference [6] were also
used to approximate the electron impact ionization cross section. For this sample problem, all other collision types
including Coulomb and recombination collisions were ignored.
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FIGURE 5. Position vs Time diagram of electron density and computational particles per cell in an ionizing spark gap using
MCC collision model. Electrons are pushed from the cathode on the left to anode on the right of the figures due to the 6kV applied
potential. The left two figure shows the original electron density and computational particles per cell with fixed particle weights
and the right two figure shows the same results using the octree merge algorithm.

σ(e) = min(C(e− I),σmax) (5)

Based on the collision frequency from the cross section, particles are selected to either undergo collision with the
background gas or not. If a particle is selected for collision, it’s kinetic energy is reduced by the ionization potential, I,
and a new electron of equal computational weight is created with zero velocity at the same location. The background
neutral density is also decreased by the same weight so that the ion density can be determined as ni = n0−nn.

With the addition of MCC ionization collisions, the growth of the number of computational electrons is exponential
from a small initial ionization fraction. This is exactly the type of situation for which the merge algorithm was designed.
Without the ability to adaptively adjust particle weights throughout the simulation, the computational cost rapidly
exceeds the resources available even if only a few and therefore statistically inaccurate seed electrons are initialized.

Finally, Figure 6 shows the total number of particles for the fixed weight and octree merged MCC ionizing
breakdown case. The particle weight adaptation is clearly compensating for what would otherwise be an exponential
growth in computational particles. Though the density results are noisier, this should be expected for few degrees of
freedom in the system. The key feature is that the computational cost is now decoupled from particle weight using the
octree based particle merge.

FUTURE EXTENSION AND CONCLUDING REMARKS

The issue of mixed second order moments mentioned previously ties into the concept of extending the conservative
merge to higher moments of the velocity distribution. Using index notation, it is clear that current formulation
conserves one 0th order moment for the mass, m̄, three 1st order moments for velocity vi, and three diagonal 2nd order
moments vivi. In the typical notations of the moments in statistical mechanics, it is useful to define these moments
instead in terms of the peculiar velocity of the particles, Vi = vi−vi. The diagonal second order moment is then simply
proportional to the diagonal terms of the pressure tensor, Pi j = nmViVj as defined in Reference [7]. Though the net
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FIGURE 6. Comparison of number of computational particles throughout the ionizing breakdown for Fixed Weight and Octree
Merge.

thermal energy, ViVi is conserved, each component of ViVi =VxVx +VyVy +VzVz is also conserved independently. This
allows for anisotropic pressure/temperature, but makes no guarantee that shear stress is conserved.

Adding a third product particle to the merge procedure with the constraint that all three product particle masses are
equal provides sufficient degrees of freedom to satisfy conservation of the full second order moment, ViVj. Though it
would appear that there are 6-additional moments for the full second order tensor, the moment integral is commutative
for ViVj =VjVi and therefore the three additional degrees of freedom are sufficient. However, these additional degrees
of freedom no longer allow for direct solution and require a non-linear solve for the merge result velocities.

Similarly, adding a fourth particle adds the ability to conserve ViVjVj. This is equivalent to conserving the heat flux
vector, and is sufficient to conserve the 13-moments necessary to the Navier-Stokes solution to the Chapmann-Enskog
expansion without the restriction of isotropy. Work has begun to solve for the set of four particle velocities that result in
the correct moments using a Newton-Raphson style non-linear solver. The solution requires stabilization due to saddle
points in the 12-dimensional solution space. Further work to extend this method to solve on the energy constrained
manifold is hoped to alleviate these issues. Developing a merge routine to this level would be potentially useful in
developing hybrid particle/continuum codes.

Along with these velocity moments, spatial moments can be similarly conserved and are necessary for conserving
electrostatic potential energy during the merge as developed in the original development of the conservative merge
algorithm [5]. In addition, future work will include consideration of conservation of magnetic moments and internal
energy.

These merging and splitting algorithms show tremendous promise for future particle codes that involve strong
particle growth and/or large dynamic range in particle density. They also provide the groundwork for modified collision
routines that are not constrained to constant numbers of computational particles as discussed in the accompanying
paper, Reference [8].
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OCTREE MERGE

Advantages of Octree Sort:
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0D-MERGE EXAMPLES

Comparison of Random vs. Octree Merge Partner Selection
(Note: Mass, Momentum, and Kinetic Energy Both Exactly Conserved )
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BEAM IN POTENTIAL WELL
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BEAM IN POTENTIAL WELL
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Despite Continuous Weight Scaling,
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GAS BREAKDOWN

Merge Needed w/ Exponential # Growth

Examples...
Chain Branching: H2 + M→ 2H + M
Ionization: Ar0 + e− → Ar+ + e− + e−

Ionizing Breakdown in 6kV Potential
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Inelastic MCC with Background

Potential Function of e− and Ar+

Merge Retains Features and Magnitude

While Controlling Computational Cost
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HIGHER ORDER MOMENT CONSERVATION

Moments defined as Integrals of VDF: Q =
∫

Qnfdvi

Discrete Version: nf → w(p)δ(v(p)) such that Q =
∑

w(p)Q/
∑

w(p)

Merged Particles have 4 DOF each: w, vx, vy, vz

Number of Moments Conserved from Number of DOF

Moment Order

Mass 0th ∑
w(p) = w

Mass Flux 1st ∑
w(p)v(p)

i = w · vi

Momentum Flux 2nd

Energy Flux 3rd ∑
w(p)v(p)

i (v(p))2 = w · viv2

Cartesian Moments
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EXTENSION TO HYBRID METHODS

Merge Quantities Needed for Hybridization:

Reconstructed VDF Natural extension to
Fokker-Planck/Boltzmann Solvers

Higher Moment Merges would Facilitate
extension to Hybrid Euler, Navier-Stokes,
13-moment, and Beyond

Reversal of VDF/Moments to Particles
would Enable Particle Generation in
Transition Zones
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END

Thank You

Questions?
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